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Abstract. We use the shifted 1 / N  expansion method to calculate the energy eigenvalues 
of the non-polynomial oscillator V ( r )  = r2+Ar2/(1 + gr’) .  The results thus obtained are 
in excellent agreement with exact numerical results. It is also shown that the non-polynomial 
interaction can be made supersymmetric and in this case also the results obtained by the 
shifted 1 / N  method matches extremely well with the exact analytic results given by 
supersymmetry. 

1. Introduction 

The shifted 1/ N expansion method [ 1,2] is an extremely powerful method of solving 
the Schrodinger equation and of late it has been used in a number of problems [3]. 
The chief merits of this method are: (i) it is non-perturbative in nature and hence can 
be used in problems which do not necessarily involve small coupling constant; (ii) the 
method is simple and gives fairly accurate eigenvalues. The shifted 1 / N  expansion 
differs from the large N expansion [4] in the expression of the expansion parameter. 
In the former case the expansion parameter is 1/ E, E =  N + 21 - a, whereas in the latter 
case it is 1/ k where k = N+21, N is the number of spatial dimensions, 1(1+ N - a ) h 2  
is the square of the eigenvalue of the N-dimensional orbital angular momentum and 
a is the shift chosen by requiring agreement between the 1/E expansion and the exact 
analytic results for the harmonic oscillator and the Coulomb potential. 

In the present paper we shall employ the shifted 1 / N  method to determine the 
energy eigenvalues of the non-polynomial oscillator represented by the potential 
V( r )  = r 2 +  h r 2 / (  1 + gr‘) .  This interaction is particularly important and its application 
ranges from purely phenomenological needs of quantum mechanics to field theory in 
zero dimensions [ 5 ]  and quantum optics [6]. In particular a number of papers have 
been devoted to the study ofthis potential in one dimension [7,8]. In contrast, relatively 
little information is available in the three-dimensional case. Znojil [9] has constructed 
the exact wavefunctions and analytic (continued fraction) Green function in one and 
three dimensions and also the asymptotic power-series expansions of the Green function 
by the fixed-point perturbation theory. 

As mentioned earlier, the non-polynomial oscillator has been studied by a variety 
of methods [7-91 and accurate results have been obtained. Here we shall derive some 
approximate results (by the shifted 1 / N  expansion method) as well as some exact 
analytical results. To obtain these exact results it will be shown that the non-polynomial 
interaction is of a supersymmetric nature [ 101 if the coupling constants satisfy certain 
relation between them. As soon as we supersymmetrise the interaction analytical 
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expansions for various ground-state wavefunctions and  energies can be found practi- 
cally without any calculation. It will be shown that the shifted 1 / N  method gives 
results which match very well with these exact results and this would be another 
indicator of the accuracy of our results. 

The organisation of the paper is as follows. In 5 2 we briefly describe the shifted 
1/ N expansion method and  collect the necessary formulae. In 8 3 we show that the 
non-polynomial interaction has a supersymmetric origin and  find expressions for the 
energy values. Section 4 contains the results and  finally 5 5 is devoted to a discussion. 

2. An outline of the shifted 1/N expansion method 

The radial Schrodinger equation in N spatial dimension is [2] 

( h’ d’ ( k - l ) ( k - 3 ) h 2  
8mr’ 7+ -- 

2m dr -  

where 

V( r )  = r z +  Ar*/( 1 + gr’) 

k =  N+21. 

In terms of the shifted variable E =  k - a ,  one has 

In order to get useful results from a 1/6 expansion, the large E limit of the potential 
must be suitably defined [ 2 ] .  The potential V(r) should behave like k2 at large E since 
the angular momentum barrier term behaves so. This will give rise to an effective 
potential which does not vary with E at large values of E, resulting in a sensible 
zeroth-order classical result. So we consider the following equation [ 2 ] :  

where Q is a constant to be specified later. 
The shifted 1/ N expansion method consists in solving equation (4) systematically 

in terms of the expansion parameter l/k. The leading contribution to the energy comes 
from the effective potential 

h 2  V(r) 
Vefl(r) =y+- 

8mr- Q 

Now it is assumed that V(r )  is sufficiently well behaved so that Vefl(r) has a 
minimum at r =  r, and there are well defined bound states. Then the following 
relationship is valid: 

4mriV’(r,)= h’Q V’(r,,) = (dV/d r ) l r= r~ l  (6) 
where ro is the root of the equation 

N + 2 1 - 2 + ( 2 n + 1 )  ( 3 +  r”;;;;;)) I ’? 
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(The derivation of equation ( 7 )  is given in [2].) 
Once ro is determined, the leading term in E is given by 

The next contribution is of order E and it is [2]: 

( 2  - a ) h 2  
4m 

[ ( n + ;) h w - 
r i  

(9) 

The shift a is chosen so that this contribution vanishes. Therefore we get 

a = 2-2(2n + l ) m w / h .  

x = E1'2(r - To)/ ro 

(10) 

The successive contributions to the energy are determined by the substitution 

(11) 

in equation (4) and expanding about x = 0 in powers of x. We are presenting here 
only the essential steps because the algorithm for the shifted 1/ N expansion has been 
developed previously [2]. 

The energy values are given by expansion in powers of 1 / E  where E =  n + 21 - a as: 

where 

h*( 1 - a ) ( 3  - U )  + (1 + 2 n ) t 2 +  3( 1 + 2n + 2n2)E', - 1/ hw 
p c " =  8m 

x [E:+6( 1 + 2n)E1k, + (11 +30n + 30n2)d:1 (13) 

p" '=  (1 + 2 n ) 6 ; + 3 ( 1 + 2 n  + 2 n 2 ) i 4 + 5 ( 3 + 8 n  + 6 n 2 + 4 n 3 ) &  

- [ ( 1 + 2 n ) 2; + 12( 1 + 2 n + 2 n * ) 
+ 2 2, s', + 6( 1 + 2 n ) E ,  s', + 30( 1 + 2 n + 2 n * ) 2, & + 6( 1 + 2 n ) d, s', 
+ 2 (  11 +30n +30n2)E',&+ 10( 13 +40n +42n2+28n3)E,&]/hw 

+ [4[:&+36(1 +2n)E,22E3+8( 11 +3On +30n2)2&+24(  1 +2n)k:k4 

+8(31 +78n+78n2)E,E3k4+ 12(57+ 189n +225n2+150n3)E:E4]/(hw)' 

+ 2( 2 1 + 59 n + 5 1 n * + 34n ') 

- [ 8 E : k 3 +  108(1+2n)dfk:+48(11 +30n+30nZ)E,E: 

+30(31+ 109n + 141n'+94n3)E:]/(hw)'. (14) 

E ,  = ( 2 - a ) h 2 / 2 m  

E' = -3h2(2 - a ) / 4 m  

E ,  = -h2/2m + riV"'(ro)/6Q 
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.s4 = 5h2/8m + r;V1'( ro)/24Q (20) 

6 ,  = - ( I  - a ) ( 3 - a ) h 2 / 4 m  

82=3(1-a ) (3 -a )h2 /8m 

6, = ( 2  - a )  h 2 /  m 

&,= -5 (2 -a )h2 /4m 

85 = -3h2/4m + r~Vv(ro) /120Q 

& = 7 h 2 / 8 m  + r:VV1( ro)/720Q. 

3. Supersymmetric character of the interaction V ( r )  = r2 + hr2/(1 + gr2) and analytical 
expressions for the energy eigenvalues 

Before showing that the non-polynomial oscillator represents a supersymmetric interac- 
tion, let us recall some essential features of supersymmetric quantum mechanics 
(SUSYQM) in one dimension [12] .  In one dimension the Hamiltonian of SUSYQM is 
given by 

H ,  = -d2/dx2+ \'*(x) 

V* (X)  = W2(X) * W'(x). 

Here W(x)  is called the superpotential and Q and Q+ are the supercharges whose 
explicit forms are 

The relations obeyed by Q, Q' and H S  are given by 

[HS, Q ]  = [HS, Q'] = 0 
~ 2 =  Q + ~ = o ,  

The eigenstates of HS are of the form 

( 3 2 )  

(33)  

If supersymmetry is unbroken, then the ground-state energy vanishes and the ground- 
state wavefunctions are of the form 

The choice between the two ground-state wavefunctions is dictated by the normalisabil- 
ity of cp:(x) respectively. The forms of cp:(x) can also be determined easily. To d o  
this we recall if I+) is a ground state then 

(35) 014) = Q'/+) = 0. 
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From (30 )  and (31 )  we then find 

q : ( x )  - exp( * 1’ W (  t )  dt). 

To show that the non-polynomial oscillator is supersymmetric we have to chose a 
suitable superpotential and to this end we take 

W ( r )  = pr+- 2gr +!. 
1+gr2 r (37)  

With the choice (37)  the supersymmetric potential corresponding to the fermionic 
sector (+ )  can easily be found from (29 ) :  

2 g - 4 p + 4 ~ g  V ( V - 1 )  
V+(r )  = p 2 r 2 +  +- + ( 2 p v  + 5 p ) .  

(1+gr2)  r2  

Note that we can write the potential corresponding to the non-polynomial oscillator 
in the following form: 

Therefore, the effective potentials appearing in the radial Schrodinger equation corre- 
sponding to (39 )  and the Schrodinger equation corresponding to (38 )  are given 
respectively by 

V e y r ) =  r 2 - h l g , -  Z(Z+ 1 )  
(1+gr’) r2 

V:!(r) = p 2 r 2 +  +-, 2g - 4 p  + 4 ~ g  U( v - 1 )  
(1+gr2)  r2 

Hence we can identify the two Schrodinger equations with the effective potentials 
provided 

(42) A = - (2g2  - 4pg  + 4 ~ g ’ )  

E ;  - A / g  = E :  - 2 p v  - 5 p .  

p =  i l ;  v = l + l .  

The relation between the energy eigenvalues is given by 

(43 )  
From (36 )  and (37 )  the ground-state wavefunction corresponding to the fermionic 
sector (+ )  is found to be 

q: ( r )  - exp( 1 W (  t )  dt)  = r’+’( 1 + gr’) e x p ( p r 2 / 2 ) .  (44) 

However, (44 )  will be an acceptable ground state only if q:( r )  satisfies proper boundary 
conditions, i.e. 

lim qO+(r) = o 

lim q:( r )  = 0. 

r -cc  

r - 0  

(We point out that even though we 
applied to the problem at hand only 

(45 )  

described SUSYQM in one dimensions it can be 
if we remain on the half-line (0, a); in that case 
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we can identify one-dimensional SUSYQM with the three-dimensional radial problem. 
In SUSYQM this amounts to putting up a barrier at the origin [ 131.) Equation (44) tells 
us that q:( r )  will be normalisable if p = - 1 and I > 0 and so 

q : ( r )  - r'+'(1 +gr') exp(-r2/2). (46) 

In this case we have 

EY=O (47) 

so that the ground-state energy of the non-polynomial oscillator is given by 

E:= A/g+2(1+ 1 ) +  5 .  (48) 

It is interesting to note that for each value of I we have a new superpotential, i.e. a 
new SUSYQM system, but in each case the ground state of SUSYQM is related to the 
n = O  ground state of the non-polynomial oscillator according to (48). Now E :  can 
be obtained for various values of A and  g, chosen according to 

A = -[2g2+4g+4(1+ l)g']. (49) 

In the next section we shall compare ground-state energies found by the shifted 1 / N  
expansion method with the exact values given by (48). 

4. Results 

For potential (2) the successive derivatives are given by the following: 

V'( r )  = 2r+2Ar/( 1 + gr')' (50) 

VI'( r )  = 2 + 2A /(  1 + gr')' - 8Agr2/( 1 + gr2)3 (51)  

V"'(r)=24gA(gr'- l ) / ( l + g ~ ~ ) ~  (52) 

VIv( r )  = 24gA ( 10gr2 - 5g2r4 - 1 ) / (  1 + gr2)' (53)  
V"(r) = 24g2r(30+30g2r4- 100gr2)A/(1 +gr2)6 (54) 

V'"(r)  =720Ag2(1 +35g2r4-21gr2-7g3r6)/(1 +gr2)'. ( 5 5 )  

For any given choice of n and I ,  equation (7)  becomes a transcendental equation 
when V'(r) and V"(r) are substituted into it from equations (50) and  (51) .  This 
transcendental equation can be solved numerically to obtain r, .  Substitution of r, into 
equations (6), (12)-(26) and (52)-(55) immediately gives the energy eigenvalues. In 
all our calculations we have taken h = 2m = 1 .  

In table 1 we list our second-order energy values calculated from equation (12) 
corresponding to 1 = -1,0 (for comparison with the one-dimensional case [ S I )  and  
compare them with those given by Bessis and Bessis [14] and Lai et a1 [15] wherever 
possible. As is evident from table 1 the agreement is excellent in almost all the cases, 
the exception being the ground-state values at ( A  = 1, g = l ) ,  ( A  = 10, g = lo), ( A  = 100, 
g = 100) and ( A  = 0.1, g = 2)  and the ground-state and second excited state at  ( A  = 100, 
g = 10). In these cases the higher-order correction terms are essential because we found 
that the first-order correction gives better agreement than the second-order correction. 

In  table 2, the shifted 1/N expansion results (with second-order correction) have 
been compared with the exact supersymmetric results given by (48) and (49). The 
maximum error obtained in these cases is 0.02%. Finally, we have given the energy 
values for 2p and 3s-3d states for various values of A and g in table 3. 
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Table I .  The first four energy levels for different values of A and g calculated from the 
shifted I /  N expansion method. The numbers in the round and square brackets correspond 
to the variational results of Bessis and Bessis [ 141 and the Pad6 approximation results of 
Lai er a /  [I51 respectively. 

A 

0.1 0.5 1 I O  100 

g=O.1 1.043 140 
(1.043 174) 
[1.043 1731 

3.120 039 
(3.120082) 
[3.120081] 

5.181 319 
(5.181 095) 
[5.181 0941 

7.231 179 
(7.231 010) 
[7.231 0091 

g = 0.5 1.028 982 
(1.031 215) 
[1.031 2141 

3.074019 
(3.073 903 j 
[3.073 9021 

5.090 873 
(5.093 069) 
[5.093 0601 

7.103 912 
(7.105 850) 
[7.105 8501 

g =  1 1.021 216 
(1.024 187) 
[1.024 1231 

3.051 999 
(3.051 651) 
[3.051 5261 

5.052 327 
(5.059 287) 
[5.058 9901 

7.062 590 
(7.065 498) 
[7.064 9661 

g = 1 0  1.005731 
(1.005 943) 

3.008 751 
(3.008 81 1 ) 

5.008 275 
(5.008 280) 

1.202 990 
( 1.203 040) 
[ 1.203 0391 

3.570 678 
(3.570 809) 
[3.570 8091 

5.872 099 
(5.871 584) 
[5.871 5831 

8.122 420 
(8.121 871) 
[8.121 8711 

1.144 596 
(1.151 564) 
[1.151 5631 

3.363 617 
(3.363 801) 
[3.363 8011 

5.460 438 
(5.463 214) 
[5.463 2111 

7.520 581 
(7.527 881 j 
[7.527 8811 

1.099 45 1 
(1.118589) 
[1.118552] 

3.258 369 
(3.255 842) 
[3.255 8021 

5.264 521 
(5.295 063) 
[5.294916] 

7.312 734 
(7.324 540) 
[7.234 5401 

1.029 354 
( 1.029 685) 

3.043 796 
(3.044 05 1 j 

5.041 422 
(5.041 412) 

1.380 501 
(1.380 532) 
[1.380 5321 

4.079 807 
(4.079 883) 
[4.079 8831 

6.668 245 
(6.667 919) 
[6.667 9191 

9.167 067 
(9.166 567) 
[9.166 5671 

1.285 758 
( 1.292 951) 
[ 1.292 9501 

3.712 292 
(3.713 902) 
[3.713 9021 

5.930 119 
(5.920 632) 
[5.920 6321 

8.043 514 
(8.052 379) 
[8.052 3781 

1.198 184 
( I  ,232 372) 
[1.232 3531 

3.512 157 
(3.507 421) 
[3.507 3971 

5.537 385 
(5.589 861 j 
[5.589 8331 

7.625 135 
(7.648 317) 
[7.649 0681 

1.060 918 
(1.059 297 ) 

3.087 574 
(3.088091) 

5.082 822 
(5.082 848) 

3.250 165 
(3.250 261) 
[3.250 2611 

9.618-83 
(9.619 066) 
[9.619 0661 

15.728 957 
(15.729 336) 
[15.729 3361 

21.590 71 1 
(21.591 007) 
[21.591 0051 

3.016 427 
(3.016 854) 
[3.016 8541 

8.481 044 
(8.482271) 
[8.482 2701 

12.940 612 
(12.948 033) 
[ 12.948 0381 

16.683 664 
(16.679 365) 
[ 16.679 41 I ]  

2.777 245 
(2.782 330) 
[2.782 3301 

7.405 425 
(7.417 506) 
[7.417 5061 

10.811 607 
(10.701 026) 
[ 10.704 4801 

13.495 879 
(13.388 324) 
[ 13.390 0031 

1.693 636 
(1.580 025) 

3.873 21 1 
(3.879 037) 

5.824 408 
(5.832 769) 

9.976 142 
I 9.976 180) 
19.976 1801 

29.781 198 
(29.781 191) 
[29.781 1911 

49.292 716 
(49.292 691 1 
[49.292 6901 

68.512 9918 
(68.513 052) 
[h8.513 0621 

9.692 159 
19.692 158)  
[9.692 1571 

28.362 637 
(28.362 598) 
[28.362 5971 

45.632 923 
(45.636 573) 
[45.636 5721 

61.573 534 
(61.577 873) 
[ h l  577 8731 

9.359 312 
19.359 418) 
[9.359 4181 

26.706 230 
(26.705 965) 
[26.705 9651 

41.419 437 
(41.441 010) 
[41.441 0991 

53.820 199 
(53.839 093) 
[53.839 0921 

5.308 762 
(5.793 947) 

11.611 174 
( 1  1.572 198) 

13.993 148 
( 13.628 79) 
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Table 1. (continued) 

0.1 0.5 1 10 100 

7.009 182 7.045-41 7,091 875 7.918 053 16.102 810 
(7.009038) (7.045 187) (7.090 270) (7.903 1 5 5 )  (15.988 706) 

g = 100 1.000 755 1.003 778 1.007 554 1.075 263 1.718 594 
(1.000 841) (1.004 205) (1.016 820) (1.084 064) 1.836 385) 

3.000 985 3.004 923 3.009 844 3.098 414 3.984 322 
(3.000983) (3.004916) (3.019664) (3.098 317) (3.983 099) 

5.000 979 5.004 897 5.009 791 5.097 876 5.978 945 
(5.000926) (5.004638) (5.018551) (5.092 762) (5.928 353) 

7.000 992 7.004 959 7.009 91 1 7.099 078 7.990 810 
(7.000985) 17.004922) (7.019690) (7.098 449) (7.984 445) 

Table 2. Comparison of the ground-state energy values calculated from the shifted l /  N 
expansion with the exact analytic SUSY results. 

Ground-state energy value 

g I A I /  N expansion Exact SUSY 

0.1 0 -0.46 2.400 520 2.4 
0.1 1 -0.5 4.000 116 4.0 
0.1 2 -0.54 5.599 965 5.6 
0.01 0 -0.0406 2.399 989 2.4 
0.01 1 -0.041 4.899 974 4.9 
0.1 -1 -0.42 0.801 177 0.801 

t This result has also been obtained by Fack et a /  in [8]. 

In table 4, we present energy values corresponding to A = 0.1, g = 2 obtained by 
the present method, by Bessis and Bessis [14], by Lai et al[15] and Handy [SI together 
with the percentage deviations from Handy’s result. It is seen from table 3 that the 
energy values corresponding to the first excited state obtained by the present method 
are in better agreement with Handy’s result [8] (by comparison with values obtained 
by Bessis and Bessis [141 and Lai et a1 [15]) though the ground-state result is less 
accurate, as can be expected in the 1/N formalism. 

5. Discussion 

In this paper we have applied the shifted 1/ N expansion to find energy eigenvalues 
of the non-polynomial oscillator V (  r )  = r2+ Ar2/(1 + g r 2 ) .  The results we have found 
are in excellent agreement with accurate results of [14, 151. Furthermore, it has been 
shown that the non-polynomial interaction has a supersymmetric character provided 
the coupling constants satisfy a certain relation between them. In this case, using the 
SUSY identification, ground states can be found almost trivially. The accuracy of the 
shifted 1/N method has also been tested in a different way: we have calculated the 
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Table 3. The energy values for 2p, 3s-3d states for various values of A and g. 

A State 0.1 0.5 1 10 100 

0.1 2p 
3s 
3P 
3d 

0.5 2p 
3s 
3P 
3d 

1 2P 
3s 
3P 
3d 

10 2p 
3s 
3P 
3d 

100 2p 
3s 
3P 
3d 

5.186 338 
11.309 171 
9.276 635 
7.243 927 

5.893 494 
12.519 642 
10.350311 
8.177 754 

6.704 090 
13.969 894 
11.622 346 
9.261 812 

15.813 628 
32.609 516 
27.293 083 
21.836 043 

49.389615 
106.088 741 
87.539 397 
68.801 562 

5.100976 
11.115 476 
9.117 522 
7.1 19 005 

5.500 470 
11.578 069 
9.586 705 
7.592 014 

5.989 770 
12.158 447 
10.171 198 
8.176 220 

13.244 687 
23.005 401 
20.125 410 
17.394651 

46.083 221 
89.718 266 
76.654 728 
62.857 148 

5.065 610 
11.067 785 
9.070 745 
7.073 713 

5.327 161 
11.338 469 
9.353 303 
7.368 046 

5.652 112 
11.675 801 
9.705 584 
7.734 778 

11.071 273 
17.702 350 
15.962 474 
14.089 958 

42.236 452 
72.718 487 
64.802 034 
55.976 148 

5.009 406 
11.009416 
9.009 504 
7.009 622 

5.047 058 
1 1.047 083 
9.047 530 
7.048 123 

5.094 107 
11.094 163 
9.095 056 
7.096 239 

5.940 689 
11.941 423 
9.950 350 

14.089 958 

14.363 739 
20.389 517 
18.482 766 
16.611 028 

5.000 994 
11.000 993 
9.000 999 
7.000 994 

5.004 968 
11.004 970 
9.004 970 
7.004 982 

5.009 935 
11.009 936 
9.009 948 
7.009 960 

5.099 346 
1 1.099 363 
9.099 463 
7.962 262 

5.993 565 
11.993 716 
9.994 694 
7.996 048 

Table4. Energy values corresponding to the ground state and the first excited state when 
A = 0.1 and g = 2. 

Ground state First excited state 

Deviation Deviation 
€0 from Handy [8] E ,  from Handy [8] 

Roy et a1 1.019 046t 0.182% 3.032 875 0.003% 
Bessis and Bessis 1.017 894 0.009% 3.031 773 0.006% 
1141 
Lai ef a /  [ 151 1.017 281 0.069% 3.032 957 0.032% 
Handy [8] 1.017 185 3.032 772 

t Only first-order correction has been taken. 

same states, as those given by SUSY, by the shifted 1/N method and these energy 
values match the exact SUSY values extremely well. In fact it can be shown that SUSY 
provides a check for the numerical calculation of eigenvalues for many well known 
potentials for which analytical results cannot be obtained otherwise. Further work in 
this direction is in progress. 
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