Shifted $1 / \mathrm{N}$ expansion approach to the interaction $V(r)=r^{2}+\lambda r^{2} /\left(1+g r^{2}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 211579
(http://iopscience.iop.org/0305-4470/21/7/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:38

Please note that terms and conditions apply.

Shifted $1 / N$ expansion approach to the interaction
 $V(r)=r^{2}+\lambda r^{2} /\left(1+g r^{2}\right)$

Barnana Roy, Rajkumar Roychoudhury and Pinaki Roy
Electronics Unit, Indian Statistical Institute, Calcutta 700035 , India

Received 9 July 1987

Abstract

We use the shifted $1 / N$ expansion method to calculate the energy eigenvalues of the non-polynomial oscillator $V(r)=r^{2}+\lambda r^{2} /\left(1+g r^{2}\right)$. The results thus obtained are in excellent agreement with exact numerical results. It is also shown that the non-polynomial interaction can be made supersymmetric and in this case also the results obtained by the shifted $1 / N$ method matches extremely well with the exact analytic results given by supersymmetry.

1. Introduction

The shifted $1 / N$ expansion method [1,2] is an extremely powerful method of solving the Schrödinger equation and of late it has been used in a number of problems [3]. The chief merits of this method are: (i) it is non-perturbative in nature and hence can be used in problems which do not necessarily involve small coupling constant; (ii) the method is simple and gives fairly accurate eigenvalues. The shifted $1 / N$ expansion differs from the large N expansion [4] in the expression of the expansion parameter. In the former case the expansion parameter is $1 / \bar{k}, \bar{k}=N+2 l-a$, whereas in the latter case it is $1 / k$ where $k=N+2 l, N$ is the number of spatial dimensions, $l(l+N-a) \hbar^{2}$ is the square of the eigenvalue of the N-dimensional orbital angular momentum and a is the shift chosen by requiring agreement between the $1 / \bar{k}$ expansion and the exact analytic results for the harmonic oscillator and the Coulomb potential.

In the present paper we shall employ the shifted $1 / N$ method to determine the energy eigenvalues of the non-polynomial oscillator represented by the potential $V(r)=r^{2}+\lambda r^{2} /\left(1+g r^{2}\right)$. This interaction is particularly important and its application ranges from purely phenomenological needs of quantum mechanics to field theory in zero dimensions [5] and quantum optics [6]. In particular a number of papers have been devoted to the study of this potential in one dimension [7,8]. In contrast, relatively little information is available in the three-dimensional case. Znojil [9] has constructed the exact wavefunctions and analytic (continued fraction) Green function in one and three dimensions and also the asymptotic power-series expansions of the Green function by the fixed-point perturbation theory.

As mentioned earlier, the non-polynomial oscillator has been studied by a variety of methods [7-9] and accurate results have been obtained. Here we shall derive some approximate results (by the shifted $1 / N$ expansion method) as well as some exact analytical results. To obtain these exact results it will be shown that the non-polynomial interaction is of a supersymmetric nature [10] if the coupling constants satisfy certain relation between them. As soon as we supersymmetrise the interaction analytical
expansions for various ground-state wavefunctions and energies can be found practically without any calculation. It will be shown that the shifted $1 / N$ method gives results which match very well with these exact results and this would be another indicator of the accuracy of our results.

The organisation of the paper is as follows. In $\S 2$ we briefly describe the shifted $1 / N$ expansion method and collect the necessary formulae. In $\S 3$ we show that the non-polynomial interaction has a supersymmetric origin and find expressions for the energy values. Section 4 contains the results and finally $\S 5$ is devoted to a discussion.

2. An outline of the shifted $1 / \mathbf{N}$ expansion method

The radial Schrödinger equation in N spatial dimension is [2]

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{(k-1)(k-3) \hbar^{2}}{8 m r^{2}}+V(r)\right) \psi(r)=E \psi(r) \tag{1}
\end{equation*}
$$

where

$$
\begin{align*}
& V(r)=r^{2}+\lambda r^{2} /\left(1+g r^{2}\right) \\
& k=N+2 l . \tag{2}
\end{align*}
$$

In terms of the shifted variable $\bar{k}=k-a$, one has

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}+\frac{\bar{k}^{2}[1-(1-a) / \bar{k}][1-(3-a) / \bar{k}] \hbar^{2}}{8 m r^{2}}+V(r)\right) \psi(r)=E \psi(r) . \tag{3}
\end{equation*}
$$

In order to get useful results from a $1 / \bar{k}$ expansion, the large E limit of the potential must be suitably defined [2]. The potential $V(r)$ should behave like \bar{k}^{2} at large \bar{k} since the angular momentum barrier term behaves so. This will give rise to an effective potential which does not vary with \bar{k} at large values of \bar{k}, resulting in a sensible zeroth-order classical result. So we consider the following equation [2]:
$-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2} \psi(r)}{\mathrm{d} r^{2}}+\bar{k}^{2}\left(\frac{\hbar^{2}[1-(1-a) / \bar{k}][1-(3-a) / \bar{k}]}{8 m r^{2}}+\frac{V(r)}{Q}\right) \psi(r)=E \psi(r)$
where Q is a constant to be specified later.
The shifted $1 / N$ expansion method consists in solving equation (4) systematically in terms of the expansion parameter $1 / \bar{k}$. The leading contribution to the energy comes from the effective potential

$$
\begin{equation*}
V_{\mathrm{eff}}(r)=\frac{\hbar^{2}}{8 m r^{2}}+\frac{V(r)}{Q} . \tag{5}
\end{equation*}
$$

Now it is assumed that $V(r)$ is sufficiently well behaved so that $V_{\text {eff }}(r)$ has a minimum at $r=r_{0}$ and there are well defined bound states. Then the following relationship is valid:

$$
\begin{equation*}
4 m r_{0}^{3} V^{\prime}\left(r_{0}\right)=\hbar^{2} Q \quad V^{\prime}\left(r_{0}\right)=\left.(\mathrm{d} V / \mathrm{d} r)\right|_{r=r_{0}} \tag{6}
\end{equation*}
$$

where r_{0} is the root of the equation

$$
\begin{align*}
N+2 l-2+ & (2 n+1)\left(3+\frac{r_{0} V^{\prime \prime}\left(r_{0}\right)}{V^{\prime}\left(r_{0}\right)}\right)^{1 / 2} \\
& \left.=\left(\frac{4 m r_{0}^{3} V^{1}\left(r_{0}\right)}{\hbar^{2}}\right)^{1 / 2} \quad V^{\prime \prime}\left(r_{0}\right)=\left(\mathrm{d}^{2} V / \mathrm{d} r^{2}\right) \right\rvert\, \tag{7}
\end{align*}
$$

(The derivation of equation (7) is given in [2].)
Once r_{0} is determined, the leading term in E is given by

$$
\begin{equation*}
\vec{k}^{2} V_{\mathrm{eff}}\left(r_{0}\right)=\frac{\bar{k}^{2}}{r_{0}^{2}}\left(\frac{\hbar^{2}}{8 m}+\frac{r_{0}^{2} V\left(r_{0}\right)}{Q}\right) . \tag{8}
\end{equation*}
$$

The next contribution is of order \bar{k} and it is [2]:

$$
\begin{equation*}
\frac{\bar{k}}{r_{0}^{2}}\left[\left(n+\frac{1}{2}\right) \hbar w-\frac{(2-a) \hbar^{2}}{4 m}\right] . \tag{9}
\end{equation*}
$$

The shift a is chosen so that this contribution vanishes. Therefore we get

$$
\begin{equation*}
a=2-2(2 n+1) m w / \hbar . \tag{10}
\end{equation*}
$$

The successive contributions to the energy are determined by the substitution

$$
\begin{equation*}
x=\bar{k}^{1 / 2}\left(r-r_{0}\right) / r_{0} \tag{11}
\end{equation*}
$$

in equation (4) and expanding about $x=0$ in powers of x. We are presenting here only the essential steps because the algorithm for the shifted $1 / N$ expansion has been developed previously [2].

The energy values are given by expansion in powers of $1 / \bar{k}$ where $\bar{k}=n+2 l-a$ as:

$$
\begin{equation*}
E_{n, l}=\frac{\bar{k}}{r_{0}^{2}}\left[\frac{\hbar^{2} \bar{k}}{8 m}+\frac{r_{0}^{2} \bar{k} V\left(r_{0}\right)}{Q}+\frac{\beta^{(1)}}{\bar{k}}+\frac{\beta^{(2)}}{\bar{k}^{2}}+\mathrm{O}\left(\frac{1}{\bar{k}^{3}}\right)\right] \tag{12}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta^{(1)}=\frac{\hbar^{2}(1-a)(3-a)}{8 m}+(1+2 n) \tilde{\varepsilon}_{2}+3\left(1+2 n+2 n^{2}\right) \tilde{\varepsilon}_{4}-1 / \hbar w \\
& \times\left[\tilde{\varepsilon}_{1}^{2}+6(1+2 n) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3}+\left(11+30 n+30 n^{2}\right) \tilde{\varepsilon}_{3}^{2}\right] \tag{13}\\
& \beta^{(2)}=(1+2 n) \tilde{\delta}_{2}+3\left(1+2 n+2 n^{2}\right) \tilde{\delta}_{4}+5\left(3+8 n+6 n^{2}+4 n^{3}\right) \tilde{\delta}_{6} \\
&-\left[(1+2 n) \tilde{\varepsilon}_{2}^{2}+12\left(1+2 n+2 n^{2}\right) \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{4}+2\left(21+59 n+51 n^{2}+34 n^{3}\right) \tilde{\varepsilon}_{4}^{2}\right. \\
&+2 \tilde{\varepsilon}_{1} \tilde{\delta}_{1}+6(1+2 n) \tilde{\varepsilon}_{1} \tilde{\delta}_{3}+30\left(1+2 n+2 n^{2}\right) \tilde{\varepsilon}_{1} \tilde{\delta}_{5}+6(1+2 n) \tilde{\varepsilon}_{3} \tilde{\delta}_{1} \\
&\left.+2\left(11+30 n+30 n^{2}\right) \tilde{\varepsilon}_{3} \tilde{\delta}_{3}+10\left(13+40 n+42 n^{2}+28 n^{3}\right) \tilde{\varepsilon}_{3} \tilde{\delta}_{5}\right] / \hbar w \\
&+\left[4 \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{2}+36(1+2 n) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{3}+8\left(11+30 n+30 n^{2}\right) \tilde{\varepsilon}_{2} \tilde{\varepsilon}_{3}^{2}+24(1+2 n) \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{4}\right. \\
&\left.+8\left(31+78 n+78 n^{2}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3} \tilde{\varepsilon}_{4}+12\left(57+189 n+225 n^{2}+150 n^{3}\right) \tilde{\varepsilon}_{3}^{2} \tilde{\varepsilon}_{4}\right] /(\hbar w)^{2} \\
&-\left[8 \tilde{\varepsilon}_{1}^{3} \tilde{\varepsilon}_{3}+108(1+2 n) \tilde{\varepsilon}_{1}^{2} \tilde{\varepsilon}_{3}^{2}+48\left(11+30 n+30 n^{2}\right) \tilde{\varepsilon}_{1} \tilde{\varepsilon}_{3}^{3}\right. \\
&\left.+30\left(31+109 n+141 n^{2}+94 n^{3}\right) \tilde{\varepsilon}_{3}^{4}\right] /(\hbar w)^{3} . \tag{14}\\
& \tilde{\varepsilon}_{j}=\frac{\varepsilon_{j}}{(2 m w \mid \hbar)^{j / 2}} \tag{15}\\
& \tilde{\delta}_{j}=\frac{\delta_{j}}{(2 m w \mid \hbar)^{j / 2}} \tag{16}\\
&=\frac{\hbar}{2 m}\left(3+\frac{r_{0} V^{\prime \prime}\left(r_{0}\right)}{V^{1}\left(r_{0}\right)}\right)^{1 / 2} \tag{17}\\
& \varepsilon_{1}=(2-a) \hbar^{2} / 2 m \tag{18}\\
& \varepsilon_{2}=-3 \hbar^{2}(2-a) / 4 m \tag{19}\\
& \varepsilon_{3}=-\hbar^{2} / 2 m+r_{0}^{5} V^{1 I I}\left(r_{0}\right) / 6 Q
\end{align*}
$$

$$
\begin{align*}
& \varepsilon_{4}=5 \hbar^{2} / 8 m+r_{0}^{6} V^{1 \mathrm{~V}}\left(r_{0}\right) / 24 Q \tag{20}\\
& \delta_{1}=-(1-a)(3-a) \hbar^{2} / 4 m \tag{21}\\
& \delta_{2}=3(1-a)(3-a) \hbar^{2} / 8 m \tag{22}\\
& \delta_{3}=(2-a) \hbar^{2} / m \tag{23}\\
& \delta_{4}=-5(2-a) \hbar^{2} / 4 m \tag{24}\\
& \delta_{5}=-3 \hbar^{2} / 4 m+r_{0}^{7} V^{\mathrm{V}}\left(r_{0}\right) / 120 Q \tag{25}\\
& \delta_{6}=7 \hbar^{2} / 8 m+r_{0}^{8} V^{\mathrm{VI}}\left(r_{0}\right) / 720 Q . \tag{26}
\end{align*}
$$

3. Supersymmetric character of the interaction $V(r)=r^{2}+\lambda r^{2} /\left(1+g r^{2}\right)$ and analytical expressions for the energy eigenvalues

Before showing that the non-polynomial oscillator represents a supersymmetric interaction, let us recall some essential features of supersymmetric quantum mechanics (SUSYQM) in one dimension [12]. In one dimension the Hamiltonian of SUSYQM is given by

$$
\begin{align*}
& H^{\mathrm{s}}=\left\{Q^{+}, Q\right\}=\left(\begin{array}{cc}
H_{+} & 0 \\
0 & H_{-}
\end{array}\right) \tag{27}\\
& H_{ \pm}=-\mathrm{d}^{2} / \mathrm{d} x^{2}+V_{ \pm}(x) \tag{28}\\
& V_{ \pm}(x)=W^{2}(x) \pm W^{\prime}(x) . \tag{29}
\end{align*}
$$

Here $W(x)$ is called the superpotential and Q and Q^{+}are the supercharges whose explicit forms are

$$
\begin{align*}
& Q=(p+\mathrm{i} W)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \tag{30}\\
& Q^{+}=(p-\mathrm{i} W)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) . \tag{31}
\end{align*}
$$

The relations obeyed by Q, Q^{+}and H^{s} are given by

$$
\begin{align*}
& {\left[H^{\mathrm{s}}, Q\right]=\left[H^{\mathrm{s}}, Q^{+}\right]=0} \tag{32}\\
& Q^{2}=Q^{+2}=0 \tag{33}
\end{align*}
$$

The eigenstates of H^{s} are of the form

$$
\begin{equation*}
\varphi^{n}(x)=\binom{\varphi_{+}^{n}(x)}{\varphi_{-}^{n}(x)} . \tag{34}
\end{equation*}
$$

If supersymmetry is unbroken, then the ground-state energy vanishes and the groundstate wavefunctions are of the form

$$
\binom{\varphi_{+}^{0}(x)}{0} \quad \text { or } \quad\binom{0}{\varphi_{-}^{0}(x)}
$$

The choice between the two ground-state wavefunctions is dictated by the normalisability of $\varphi_{ \pm}^{0}(x)$ respectively. The forms of $\varphi_{ \pm}^{0}(x)$ can also be determined easily. To do this we recall if $|\psi\rangle$ is a ground state then

$$
\begin{equation*}
Q|\psi\rangle=Q^{+}|\psi\rangle=0 . \tag{35}
\end{equation*}
$$

From (30) and (31) we then find

$$
\begin{equation*}
\varphi_{ \pm}^{0}(x) \sim \exp \left(\pm \int^{x} W(t) \mathrm{d} t\right) \tag{36}
\end{equation*}
$$

To show that the non-polynomial oscillator is supersymmetric we have to chose a suitable superpotential and to this end we take

$$
\begin{equation*}
W(r)=\mu r+\frac{2 g r}{1+g r^{2}}+\frac{\nu}{r} \tag{37}
\end{equation*}
$$

With the choice (37) the supersymmetric potential corresponding to the fermionic sector (+) can easily be found from (29):

$$
\begin{equation*}
V_{+}(r)=\mu^{2} r^{2}+\frac{2 g-4 \mu+4 \nu g}{\left(1+g r^{2}\right)}+\frac{\nu(\nu-1)}{r^{2}}+(2 \mu \nu+5 \mu) . \tag{38}
\end{equation*}
$$

Note that we can write the potential corresponding to the non-polynomial oscillator in the following form:

$$
\begin{equation*}
V(r)=r^{2}+\frac{\lambda}{g}-\frac{\lambda / g}{\left(1+g r^{2}\right)} \tag{39}
\end{equation*}
$$

Therefore, the effective potentials appearing in the radial Schrödinger equation corresponding to (39) and the Schrödinger equation corresponding to (38) are given respectively by

$$
\begin{align*}
& V^{\mathrm{eff}}(r)=r^{2}-\frac{\lambda / g}{\left(1+g r^{2}\right)}+\frac{l(l+1)}{r^{2}} \tag{40}\\
& V_{+}^{\mathrm{eff}}(r)=\mu^{2} r^{2}+\frac{2 g-4 \mu+4 \nu g}{\left(1+g r^{2}\right)}+\frac{\nu(\nu-1)}{r^{2}} . \tag{41}
\end{align*}
$$

Hence we can identify the two Schrödinger equations with the effective potentials provided

$$
\begin{equation*}
\lambda=-\left(2 g^{2}-4 \mu g+4 \nu g^{2}\right) \quad \mu= \pm 1 ; \nu=l+1 . \tag{42}
\end{equation*}
$$

The relation between the energy eigenvalues is given by

$$
\begin{equation*}
E_{1}^{n}-\lambda / g=E_{+}^{n}-2 \mu \nu-5 \mu \tag{43}
\end{equation*}
$$

From (36) and (37) the ground-state wavefunction corresponding to the fermionic sector $(+)$ is found to be
$\varphi_{+}^{0}(r) \sim \exp \left(\int^{r} W(t) \mathrm{d} t\right)=r^{t+1}\left(1+g r^{2}\right) \exp \left(\mu r^{2} / 2\right)$.
However, (44) will be an acceptable ground state only if $\varphi_{+}^{0}(r)$ satisfies proper boundary conditions, i.e.

$$
\begin{align*}
& \lim _{r \rightarrow \infty} \varphi_{+}^{0}(r)=0 \\
& \lim _{r \rightarrow 0} \varphi_{+}^{0}(r)=0 \tag{45}
\end{align*}
$$

(We point out that even though we described SUSYQM in one dimensions it can be applied to the problem at hand only if we remain on the half-line $(0, \infty)$; in that case
we can identify one-dimensional SUSYQM with the three-dimensional radial problem. In SUSYQM this amounts to putting up a barrier at the origin [13].) Equation (44) tells us that $\varphi_{+}^{0}(r)$ will be normalisable if $\mu=-1$ and $l>0$ and so

$$
\begin{equation*}
\varphi_{+}^{0}(r) \sim r^{l+1}\left(1+g r^{2}\right) \exp \left(-r^{2} / 2\right) \tag{46}
\end{equation*}
$$

In this case we have

$$
\begin{equation*}
E_{+}^{0}=0 \tag{47}
\end{equation*}
$$

so that the ground-state energy of the non-polynomial oscillator is given by

$$
\begin{equation*}
E_{l}^{0}=\lambda / g+2(l+1)+5 \tag{48}
\end{equation*}
$$

It is interesting to note that for each value of l we have a new superpotential, i.e. a new SUSYQM system, but in each case the ground state of SUSYQM is related to the $n=0$ ground state of the non-polynomial oscillator according to (48). Now E_{l}^{0} can be obtained for various values of λ and g, chosen according to

$$
\begin{equation*}
\lambda=-\left[2 g^{2}+4 g+4(l+1) g^{2}\right] . \tag{49}
\end{equation*}
$$

In the next section we shall compare ground-state energies found by the shifted $1 / N$ expansion method with the exact values given by (48).

4. Results

For potential (2) the successive derivatives are given by the following:

$$
\begin{align*}
& V^{\mathrm{I}}(r)=2 r+2 \lambda r /\left(1+g r^{2}\right)^{2} \tag{50}\\
& V^{\mathrm{II}}(r)=2+2 \lambda /\left(1+g r^{2}\right)^{2}-8 \lambda g r^{2} /\left(1+g r^{2}\right)^{3} \tag{51}\\
& V^{\mathrm{II}}(r)=24 g \lambda\left(g r^{2}-1\right) /\left(1+g r^{2}\right)^{4} \tag{52}\\
& V^{\mathrm{IV}}(r)=24 g \lambda\left(10 g r^{2}-5 g^{2} r^{4}-1\right) /\left(1+g r^{2}\right)^{5} \tag{53}\\
& V^{\mathrm{V}}(r)=24 g^{2} r\left(30+30 g^{2} r^{4}-100 g r^{2}\right) \lambda /\left(1+g r^{2}\right)^{6} \tag{54}\\
& V^{\mathrm{IV}}(r)=720 \lambda g^{2}\left(1+35 g^{2} r^{4}-21 g r^{2}-7 g^{3} r^{6}\right) /\left(1+g r^{2}\right)^{7} . \tag{55}
\end{align*}
$$

For any given choice of n and l, equation (7) becomes a transcendental equation when $V^{1}(r)$ and $V^{11}(r)$ are substituted into it from equations (50) and (51). This transcendental equation can be solved numerically to obtain r_{0}. Substitution of r_{0} into equations (6), (12)-(26) and (52)-(55) immediately gives the energy eigenvalues. In all our calculations we have taken $\hbar=2 m=1$.

In table 1 we list our second-order energy values calculated from equation (12) corresponding to $l=-1,0$ (for comparison with the one-dimensional case [8]) and compare them with those given by Bessis and Bessis [14] and Lai et al [15] wherever possible. As is evident from table 1 the agreement is excellent in almost all the cases, the exception being the ground-state values at $(\lambda=1, g=1),(\lambda=10, g=10),(\lambda=100$, $g=100$) and ($\lambda=0.1, g=2$) and the ground-state and second excited state at ($\lambda=100$, $g=10$). In these cases the higher-order correction terms are essential because we found that the first-order correction gives better agreement than the second-order correction.

In table 2 , the shifted $1 / N$ expansion results (with second-order correction) have been compared with the exact supersymmetric results given by (48) and (49). The maximum error obtained in these cases is 0.02%. Finally, we have given the energy values for $2 p$ and $3 s-3 d$ states for various values of λ and g in table 3 .

Table 1. The first four energy levels for different values of λ and g calculated from the shifted $1 / N$ expansion method. The numbers in the round and square brackets correspond to the variational results of Bessis and Bessis [14] and the Pade approximation results of Lai et al [15] respectively.

	λ				
	0.1	0.5	1	10	100
$g=0.1$	$\begin{gathered} 1.043140 \\ (1.043174) \\ {[1.043173]} \end{gathered}$	$\begin{gathered} 1.202990 \\ (1.203040) \\ {[1.203039]} \end{gathered}$	$\begin{gathered} 1.380501 \\ (1.380532) \\ {[1.380532]} \end{gathered}$	$\begin{gathered} 3.250165 \\ (3.250261) \\ {[3.250261]} \end{gathered}$	$\begin{gathered} 9.976142 \\ 19.976180) \\ {[9.976180]} \end{gathered}$
	$\begin{gathered} 3.120039 \\ (3.120082) \\ {[3.120081]} \end{gathered}$	$\begin{gathered} 3.570678 \\ (3.570809) \\ {[3.570809]} \end{gathered}$	$\begin{gathered} 4.079807 \\ (4.079883) \\ {[4.079883]} \end{gathered}$	$\begin{gathered} 9.618-83 \\ (9.619066) \\ {[9.619066]} \end{gathered}$	$\begin{gathered} 29.781198 \\ (29.781191) \\ {[29.781191]} \end{gathered}$
	$\begin{gathered} 5.181319 \\ (5.181095) \\ {[5.181094]} \end{gathered}$	$\begin{gathered} 5.872099 \\ (5.871584) \\ {[5.871583]} \end{gathered}$	$\begin{gathered} 6.668245 \\ (6.667919) \\ {[6.667919]} \end{gathered}$	$\begin{gathered} 15.728957 \\ (15.729336) \\ {[15.729336]} \end{gathered}$	$\begin{gathered} 49.292716 \\ (49.292691) \\ {[49.292690]} \end{gathered}$
	$\begin{gathered} 7.231179 \\ (7.231010) \\ {[7.231009]} \end{gathered}$	$\begin{gathered} 8.122420 \\ (8.121871) \\ {[8.121871]} \end{gathered}$	$\begin{gathered} 9.167067 \\ (9.166567) \\ {[9.166567]} \end{gathered}$	$\begin{gathered} 21.590711 \\ (21.591007) \\ {[21.591005]} \end{gathered}$	$\begin{array}{r} 68.5129918 \\ (68.513052) \\ {[68.513062]} \end{array}$
$g=0.5$	$\begin{gathered} 51.028982 \\ (1.031215) \\ {[1.031214]} \end{gathered}$	$\begin{gathered} 1.144596 \\ (1.151564) \\ {[1.151563]} \end{gathered}$	$\begin{gathered} 1.285758 \\ (1.292951) \\ {[1.292950]} \end{gathered}$	$\begin{gathered} 3.016427 \\ (3.016854) \\ {[3.016854]} \end{gathered}$	$\begin{gathered} 9.692159 \\ 19.692158) \\ {[9.692157]} \end{gathered}$
	$\begin{gathered} 3.074019 \\ (3.073903) \\ {[3.073902]} \end{gathered}$	$\begin{gathered} 3.363617 \\ (3.363801) \\ {[3.363801]} \end{gathered}$	$\begin{gathered} 3.712292 \\ (3.713902) \\ {[3.713902]} \end{gathered}$	$\begin{gathered} 8.481044 \\ (8.482271) \\ {[8.482270]} \end{gathered}$	$\begin{gathered} 28.362637 \\ (28.362598) \\ {[28.362597]} \end{gathered}$
	$\begin{gathered} 5.090873 \\ (5.093069) \\ {[5.093060]} \end{gathered}$	$\begin{gathered} 5.460438 \\ (5.463214) \\ {[5.463211]} \end{gathered}$	$\begin{gathered} 5.930119 \\ (5.920632) \\ {[5.920632]} \end{gathered}$	$\begin{gathered} 12.940612 \\ (12.948033) \\ {[12.948038]} \end{gathered}$	$\begin{gathered} 45.632923 \\ (45.636573) \\ {[45.636572]} \end{gathered}$
	$\begin{gathered} 7.103912 \\ (7.105850) \\ {[7.105850]} \end{gathered}$	$\begin{gathered} 7.520581 \\ (7.527881) \\ {[7.527881]} \end{gathered}$	$\begin{gathered} 8.043514 \\ (8.052379) \\ {[8.052378]} \end{gathered}$	$\begin{gathered} 16.683664 \\ (16.679365) \\ {[16.679411]} \end{gathered}$	$\begin{gathered} 61.573534 \\ (61.577873) \\ {[61.577873]} \end{gathered}$
$g=1$	$\begin{gathered} 1.021216 \\ (1.024187) \\ {[1.024123]} \end{gathered}$	$\begin{gathered} 1.099451 \\ (1.118589) \\ {[1.118552]} \end{gathered}$	$\begin{gathered} 1.198184 \\ (1.232372) \\ {[1.232353]} \end{gathered}$	$\begin{gathered} 2.777245 \\ (2.782330) \\ {[2.782330]} \end{gathered}$	$\begin{gathered} 9.359312 \\ (9.359418) \\ {[9.359418]} \end{gathered}$
	$\begin{gathered} 3.051999 \\ (3.051651) \\ {[3.051526]} \end{gathered}$	$\begin{gathered} 3.258369 \\ (3.255842) \\ {[3.255802]} \end{gathered}$	$\begin{gathered} 3.512157 \\ (3.507421) \\ {[3.507397]} \end{gathered}$	$\begin{gathered} 7.405425 \\ (7.417506) \\ {[7.417506]} \end{gathered}$	$\begin{gathered} 26.706230 \\ (26.705965) \\ {[26.705965]} \end{gathered}$
	$\begin{gathered} 5.052327 \\ (5.059287) \\ {[5.058990]} \end{gathered}$	$\begin{gathered} 5.264521 \\ (5.295063) \\ {[5.294916]} \end{gathered}$	$\begin{gathered} 5.537385 \\ (5.589861) \\ {[5.589833]} \end{gathered}$	$\begin{gathered} 10.811607 \\ (10.701026) \\ {[10.704480]} \end{gathered}$	$\begin{gathered} 41.419437 \\ (41.441010) \\ {[41.441099]} \end{gathered}$
	$\begin{gathered} 7.062590 \\ (7.065498) \\ {[7.064966]} \end{gathered}$	$\begin{gathered} 7.312734 \\ (7.324540) \\ {[7.234540]} \end{gathered}$	$\begin{gathered} 7.625135 \\ (7.648317) \\ {[7.649068]} \end{gathered}$	$\begin{gathered} 13.495879 \\ (13.388324) \\ {[13.390003]} \end{gathered}$	$\begin{gathered} 53.820199 \\ (53.839093) \\ {[53.839092]} \end{gathered}$
$g=10$	$\begin{gathered} 1.005731 \\ (1.005943) \end{gathered}$	$\begin{gathered} 1.029354 \\ (1.029685) \end{gathered}$	$\begin{gathered} 1.060918 \\ (1.059297) \end{gathered}$	$\begin{gathered} 1.693636 \\ (1.580025) \end{gathered}$	$\begin{gathered} 5.308762 \\ (5.793947) \end{gathered}$
	$\begin{gathered} 3.008751 \\ (3.008811) \end{gathered}$	$\begin{gathered} 3.043796 \\ (3.044051) \end{gathered}$	$\begin{gathered} 3.087574 \\ (3.088091) \end{gathered}$	$\begin{gathered} 3.873211 \\ (3.879037) \end{gathered}$	$\begin{gathered} 11.611174 \\ (11.572198) \end{gathered}$
	$\begin{gathered} 5.008275 \\ (5.008280) \end{gathered}$	$\begin{gathered} 5.041422 \\ (5.041412) \end{gathered}$	$\begin{gathered} 5.082822 \\ (5.082848) \end{gathered}$	$\begin{gathered} 5.824408 \\ (5.832769) \end{gathered}$	$\begin{array}{r} 13.993148 \\ (13.62879) \end{array}$

Table 1. (continued)

	λ				
	0.1	0.5	1	10	
7.009182	$7.045-41$	7.091875	7.918053	16.102810	
(7.009038)	(7.045187)	(7.090270)	(7.903155)	(15.988706)	
$g=1001.000755$	1.003778	1.007554	1.075263	1.718594	
(1.000841)	(1.004905)	(1.016820)	(1.084064)	(1.836385)	
3.000985	3.004923	3.009844	3.098414	3.984322	
(3.000983)	(3.004916)	(3.019664)	(3.098317)	(3.983099)	
5.000979	5.004897	5.009791	5.097876	5.978945	
(5.000926)	(5.004638)	(5.018551)	(5.092762)	(5.928353)	
7.000992	7.004959	7.009911	7.099078	7.990810	
(7.000985)	(7.004922)	(7.019690)	(7.098449)	(7.984445)	

Table 2. Comparison of the ground-state energy values calculated from the shifted $1 / N$ expansion with the exact analytic SUSY results.

			Ground-state energy value	
g			λ	$1 / N$ expansion
		Exact susy		
0.1	0	-0.46	2.400520	2.4
0.1	1	-0.5	4.000116	4.0
0.1	2	-0.54	5.599965	5.6
0.01	0	-0.0406	2.399989	2.4
0.01	1	-0.041	4.899974	4.9
0.1	-1	-0.42	0.801177	0.80^{+}

\dagger This result has also been obtained by Fack et al in [8].
In table 4, we present energy values corresponding to $\lambda=0.1, g=2$ obtained by the present method, by Bessis and Bessis [14], by Lai et al [15] and Handy [8] together with the percentage deviations from Handy's result. It is seen from table 3 that the energy values corresponding to the first excited state obtained by the present method are in better agreement with Handy's result [8] (by comparison with values obtained by Bessis and Bessis [14] and Lai et al [15]) though the ground-state result is less accurate, as can be expected in the $1 / N$ formalism.

5. Discussion

In this paper we have applied the shifted $1 / N$ expansion to find energy eigenvalues of the non-polynomial oscillator $V(r)=r^{2}+\lambda r^{2} /\left(1+g r^{2}\right)$. The results we have found are in excellent agreement with accurate results of $[14,15]$. Furthermore, it has been shown that the non-polynomial interaction has a supersymmetric character provided the coupling constants satisfy a certain relation between them. In this case, using the susy identification, ground states can be found almost trivially. The accuracy of the shifted $1 / N$ method has also been tested in a different way: we have calculated the

Table 3. The energy values for $2 p, 3 \mathrm{~s}$-3d states for various values of λ and g.

λ	State	g				
		0.1	0.5	1	10	100
0.1	2p	5.186338	5.100976	5.065610	5.009406	5.000994
	3s	11.309171	11.115476	11.067785	11.009416	11.000993
	3p	9.276635	9.117522	9.070745	9.009504	9.000999
	3d	7.243927	7.119005	7.073713	7.009622	7.000994
0.5	2p	5.893494	5.500470	5.327161	5.047058	5.004968
	3 s	12.519642	11.578069	11.338469	11.047083	11.004970
	3p	10.350311	9.586705	9.353303	9.047530	9.004970
	3d	8.177754	7.592014	7.368046	7.048123	7.004982
1	2p	6.704090	5.989770	5.652112	5.094107	5.009935
	3 s	13.969894	12.158447	11.675801	11.094163	11.009936
	3 p	11.622346	10.171198	9.705584	9.095056	9.009948
	3d	9.261812	8.176220	7.734778	7.096239	7.009960
10	2p	15.813628	13.244687	11.071273	5.940689	5.099346
	3 s	32.609516	23.005401	17.702350	11.941423	11.099363
	3 p	27.293083	20.125410	15.962474	9.950350	9.099463
	3d	21.836043	17.394651	14.089958	14.089958	7.962262
100	2p	49.389615	46.083221	42.236452	14.363739	5.993565
	3 s	106.088741	89.718266	72.718487	20.389517	11.993716
	3 p	87.539397	76.654728	64.802034	18.482766	9.994694
	3d	68.801562	62.857148	55.976148	16.611028	7.996048

Table 4. Energy values corresponding to the ground state and the first excited state when $\lambda=0.1$ and $g=2$.

	Ground state		First excited state	
	E_{0}	Deviation from Handy [8]	E_{1}	Deviation from Handy [8]
Roy et al	$1.019046{ }^{+}$	0.182\%	3.032875	0.003\%
Bessis and Bessis [14]	1.017894	0.009\%	3.031773	0.006\%
Lai et al [15]	1.017281	0.069\%	3.032957	0.032\%
Handy [8]	1.017185		3.032772	

\dagger Only first-order correction has been taken.
same states, as those given by susy, by the shifted $1 / N$ method and these energy values match the exact susy values extremely well. In fact it can be shown that susy provides a check for the numerical calculation of eigenvalues for many well known potentials for which analytical results cannot be obtained otherwise. Further work in this direction is in progress.

Acknowledgment

Two of us (BR and PR) acknowledge the Council of Scientific and Industrial Research, New Delhi, for financial assistance.

References

[1] Sukhatme U and Imbo T 1983 Phys. Rev. D 28418
[2] Imbo T, Pagnamenta A and Sukhatme U 1984 Phys. Rev. D 291669
[3] Imbo T, Pagnamenta A and Sukhatme U 1984 Phys. Lett. 105A 183 Imbo T and Sukhatme U 1985 Phys. Rev. D 312655
Dutta R, Mukherji U and Varshni Y P 1986 Phys. Rev. A 34777
Roy B 1986 Phys. Rev. A 345108
[4] Mlodinow L and Papanicolaou 1980 Ann. Phy's., NY 128 314; 1981 Ann. Phys., NY 1311
[5] Salam A and Strathdee J 1976 Phys. Rev. D 13296
Biswas S N, Malik G P and Sudarshan E C G 1973 Phys. Rev. D 72884
[6] Haken H 1965 Encyclopedia of Physics vol 25/2C (Princeton, NJ: Van Nostrand)
[7] Chaudhuri R N and Mukherjee B 1983 J. Phys. A: Math. Gen. 164031
Marcilhacy G and Pons R 1985 J. Phys. A: Maih. Gen. 182441
Cohen M 1984 J. Phys. A: Math. Gen. 172345
Fack V, DeMeyer H and Vanden Berghe G 1986 J. Math. Phys. 271340
[8] Handy C R 1985 J. Phys. A: Math. Gen. 183593
[9] Znojil M 1983 J. Phys. A: Maths. Gen. 16 279, 293; 1984 J. Phys. A: Math. Gen. 17 3441, 3449
[10] Roy P and Roychoudhury R 1987 Phys. Lett. 122A 275
[11] Mlodinow L and Shatz M 1984 J. Math. Phys. 25943
Kalara S 1982 University of Rochester Report no UR-812
[12] de Crombrugghe M and Rittenburg V 1983 Ann. Phys., NY 15199
[13] Roy and P and Roychoudhury R 1985 Phys. Rev. D 321595
[14] Bessis N and Bessis G 1980 J. Math. Phys. 212780
[15] Lai C S and Lin H E 1982 J. Phys. A: Math. Gen. 151495

